Dr. Dorothea Pinotsi

Dr.  Dorothea Pinotsi

Dr. Dorothea Pinotsi

Staff of ScopeM

ETH Zürich

ScopeM

HPM C 52.2

Otto-Stern-Weg 3

8093 Zürich

Switzerland

Additional information

Additional information

Dorothea Pinotsi got her degree in Electrical Engineering and Computer Science from the National Technical University of Athens (NTUA). She obtained a PhD in Physics at ETH Zurich, in the Quantum Photonics group of Professor A. Imamoglu. She focused on the development of spectroscopy methods and in the study of light-matter interaction at the single photon level, for applications in quantum optics.

After the completion of her PhD, Dorothea’s research interests were focused on the study of the optical properties of biological systems, as well as on the understanding of biomolecular self-assembly processes, using high resolution optical techniques. In 2012 she obtained a fellowship from the Swiss National Science Foundation (SNSF) to start her post-doctoral research at the University of Cambridge. There, she worked on the development of optical super–resolution microscopy (STORM, PALM) and single-molecule spectroscopy methods for the study of Parkinson’s and Alzheimer’s diseases.

Since October 2016 Dorothea is a staff scientist at the Institute for Optical and Electron Microscopy (ScopeM) at ETH Zurich, where she continues working in the fields of super-resolution microscopy and spectroscopy for physical, chemical and life science applications. She is responsible for the various single molecule applications including super-resolution microscopy (STORM/PALM), particle tracking and spectroscopy (such as Fluorescence Correlation Spectroscopy – FCS), as well as Raman spectroscopy and Stimulated Raman scattering / Coherent Anti-Stokes Raman Scattering (SRS/CARS) microscopy.

 

Selected Publications:

[1] D. Pinotsi and A. Imamoglu, ''Single Photon Absorption by a Single Quantum Emitter'', Physical Review Letters 100, 9, 093603 (2008).

[2] D. Pinotsi, P. Fallahi, J. Miguel Sanchez and A. Imamoglu, ''Resonant Spectroscopy on Charge Tunable Quantum Dots in Photonic Crystal Structures'', IEEE Journal of Quantum Electronics 47, 11, 1371-1374 (2011).

[3] E. J. Rees, M. Erdelyi, D. Pinotsi, A.Knight, D. Metcalf, and C. F. Kaminski, ''Blind -Assessment of Localisation Microscope Image Resolution'', Optical Nanoscopy 1, 12 (2012).

[4] D. Pinotsi, A. K. Buell, C.M. Dobson, G. Kaminski Schierle, and C. F. Kaminski, ''A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence'', ChemBioChem 14 (7), 846-850 (2013).

[5] D. Pinotsi, A. K. Buell, C. Galvagnion, C. M. Dobson, G. S. Kaminski Schierle, and C. F. Kaminski, ''Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy'', Nano Letters 14, 339-345 (2014).

[6] D. Pinotsi, G. S. Kaminski Schierle and C. F. Kaminski, Optical Super-Resolution Imaging of β- Amyloid Aggregation In Vitro and In Vivo: Method and Techniques, Book chapter in Methods Mol Biol.;1303:125-41 (2015).

[7] D. Pinotsi, L. Grisanti, P. Mahou, R. Gebauer, C. F. Kaminski, A. Hassanali, G. S. Kaminski Schierle, ''Proton transfer and structure-specific fluorescence in hydrogen bond–rich protein structures'', Journal of the American Chemical Society (JACS) 138 (9), pp 3046–3057 (2016).

[8] D. Pinotsi, C. H. Michel, A. K. Buell, R.F. Laine, P. Mahou, C. M. Dobson, C. F. Kaminski, G. S. Kaminski Schierle, ''Nanoscopic insights into seeding mechanisms and toxicity of alpha-synuclein species in neurons'', Proceedings of the National Academy of Sciences of the United States of America, (PNAS) 113 (14), pp 3815–3819 (2016).

[9] L. Grisanti, D. Pinotsi, R. Gebauer, G.S. Kaminski Schierle, A. Hassanali, “A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils.’’Phys Chem Chem Phys, 19(5):4030-4040. doi: 10.1039/c6cp07564a, (2017).

[10] E. A. Halabi, Z. Thiel, N. Trapp, D. Pinotsi, P. Rivera-Fuentes,”A Photoactivatable Probe for Super-Resolution Imaging of Enzymatic Activity in Live Cells”, Journal of the American Chemical Society (JACS);139(37) (2017).

[11] E. Halabi, D. Pinotsi, P. Rivera-Fuentes, ‘’Photoregulated fluxional fluorophores for live-cell super-resolution microscopy with no apparent photobleaching.’’ Nature Communications,10(1), doi: 10.1038/s41467-019-09217-7 (2019). Editor’s highlights in Nature Methods, May 2019.

[12] D. Pinotsi, S. Rodighiero, S. Campioni, G. Csucs, ‘’An Easy Path for Correlative Electron and Super-Resolution Light Microscopy’’, Scientific Reports, 9(15526), doi: 10.1038/s41598-019-52047-2 (2019).

[13] S. Campioni, M. Bagnani, D. Pinotsi, S. Lecinski, S. Rodighiero, J. Adamcik and R. Mezzenga, ‘’Interfaces Determine the Fate of Seeded α‐Synuclein Aggregation’’ Adv. Mater. Interfaces, 7, 2000446. https://doi.org/10.1002/admi.2020004467: 2070060 (2020).

[14] A. Eördögh, C. Paganini, D. Pinotsi, P. Arosio, P. Rivera-Fuentes, ‘’A Molecular Logic Gate Enables Single-Molecule Imaging and Tracking of Lipids in Intracellular Domains’’, ACS Chem Biol. 15(9), doi: 10.1021/acschembio.0c00639, (2020).

[15] D. Pinotsi, R. Tian, P. Anand, K. Miyanishi, J.M. Boss, K.K. Chang, P. Welter, F.T. So, D. Terada, R. Igarashi, M. Shirakawa, C.L. Degen, T. F. Segawa. ‘’Distance measurements between 5 nanometer diamonds - single particle magnetic resonance or optical super-resolution imaging?’’ Nanoscale Adv. 24;5(5):1345-1355. doi: 10.1039/d2na00815g, (2023).

[16] R. Gandhimathi, D. Pinotsi , M.Köhler , J.Mansfeld, C. Ashiono, T. Kleele, S. Pawar, U. Kutay. ‘Super-resolution microscopy reveals focal organization of ER-associated Y-complexes in mitosis’’. EMBO Reports. doi: 10.15252/embr.202356766 (2023).